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INTRODUCTION 

 
The control of autonomous Unmanned Combat Air Vehicles (UCAVs) has drawn attention from 
researchers. [1, 2] The problem of controlling a swarm of vehicles to do collaborative tasks is 
more difficult.  Researchers have suggested an approach that uses one command string to control 
the motion of all UCAVs in a mission. [3-6] Each UCAV moves according to the control 
decoded from the same control command string.  There is no explicit communication among 
them.  However, the decoding of a control command string partially depends on the UCAVs 
surrounding it.  If the control command string is properly chosen, the motion of the swarm of 
UCAVs will reflect the desired collective behavior.  This approach was inspired by social 
insects, such as ants.  No single ant has the global view that can guide the group in the 
collaborative task.  It only follows the environment and local situation.  Nevertheless, the whole 
group of ants can perform complicated tasks.  The research reported in this paper uses this 
approach. 
 
Instead of choosing the control command string manually, the authors propose to search through 
the solution space using a Genetic Algorithm (GA) approach.  This allows sensory information 
to be automatically tied to a set of commands, forming a rule set for all possible sensory input 
combinations; without any help from the model developer.  The programmer is no longer 
concerned with whether it is “good” for a UCAV to turn left when approaching another UCAV 
from the front, or if UCAVs should stay a certain distance apart from one another to cover more 
ground.  The definition of an appropriate fitness function for the employed GA is enough to 
cause these rules to surface on their own. 
 
GAs have been used for a wide variety of applications, and are generally useful for solving 
optimization problems [7, 8].  These algorithms are modeled after the process of evolution 
observed in biology. A GA works with a population of individuals where each individual 
represents a potential solution to the problem to be solved. These individuals are typically 
encoded as binary strings. The initial population of a GA may be randomly generated or seeded 
with user generated solutions. The GA then proceeds through the following steps: 
 

1. Individuals in the current population are evaluated on their effectiveness as a solution to 
the problem to be solved.  Better solutions are assigned higher fitness values, and worse 
solutions, lower fitness values. 

2. If the stopping condition is satisfied, stop the evolution process and return the best 
solution. The stopping condition may be to find a solution that meets a minimum fitness 
level, or to run the system until it exceeds a maximum number of generations. 

3. A selection function selects the individuals that reproduce, and consequently, contribute 
information to the next generation. This selection function is fitness proportionate, 
causing more fit individuals to be more likely to contribute to the next generation. 

4. The selected parents undergo genetic reproduction during which genetically-inspired 
operators (such as crossover and mutation) create offspring from the selected parents. 

5. The new population of offspring individuals becomes the new current population. 
6. Go to step 1. 
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Over time, a GA is able to evolve better and better solutions in its population. 
 

UCAV MODEL 
 
The battlefield is composed of grid points.  The UCAV moves on the grid points only.  The 
coordinates of the UCAV are (x, y, θ), where position (x, y) are integers and heading angle θ is 
measured counterclockwise from the East, and can only be one of the following values: 0, 45, 90, 
135, 180, 225, 270, or 315 degrees.  The speed of the UCAV is (constant) 10 grid points per time 
step.  When the heading angle is 45,135, 225, or 315 degrees, the UCAV moves 7 diagonal grid 
points, which is equivalent to 9.9 grid points.  The model is shown in Figure 1. 
 

0º

45º

90º

135º

180º

315º225º

270º
 

 
Figure 1. UCAV motion model 

 
GA REPRESENTATION 

 
The motion of each UCAV in a time step is controlled by a 2-bit signal.  If the control is either 
(0, 0) or (0, 1), the UCAV maintains its heading angle. If the control is (1, 0), the UCAV turns -
45º.  If the control is (1, 1), the UCAV turns +45º. 
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The same control command string controls all the UCAVs in the battlefield.  It is a 32-bit binary 
string composed of 16 2-bit control pairs.  Four event sensors detect the event surrounding the 
UCAV.  Using the UCAV orientation, the sensor outputs are 4-digit binary codes representing 
events in front, right, left, and back, respectively.  Since four bits represent the sensors, there are 
sixteen possible combinations of sensory inputs.  Hence we made the sensor value, S, an integer 
varying from zero to fifteen, given by: 
 
 S = 23*f + 22*r + 21*l +20* b [1] 
 
where f is the front sensor input, r is the right sensor input, and l and b are the left and back 
sensor inputs, respectively.  The above equation simply translates sensor inputs from binary to 
decimal format.  
 
The on-board computer decodes the control command string based on the sensor outputs to 
decide the necessary maneuver.  The decoding scheme is shown in Table 1 using a sample 
control command string. 
 

Table 1.  Decoding a command string, command string used for this example: 
0 0 0 0 1 0 1 0 1 1 1 1 0 0 0 0 1 0 1 0 1 0 1 0 1 1 1 1 1 0 1 0 (32-bits) 

 
Events Sensor S Bits Motion Direction
None 0000 0 1,2 (0, 0) same 
b 0001 1 3,4 (0, 0) same 
l 0010 2 5, 6 (1, 0) -45 
l, b 0011 3 7, 8 (1, 0) -45 
r 0100 4 9, 10 (1, 1) +45 
r, b 0101 5 11, 12 (1, 1) +45 
r, l 0110 6 13, 14 (0, 0) same 
r, l, b 0111 7 15, 16 (0, 0) same 
f 1000 8 17, 18 (1, 0) -45 
f, b 1001 9 19, 20 (1, 0) -45 
f, l 1010 10 21, 22 (1, 0) -45 
f, l, b 1011 11 22, 24 (1, 0) -45 
f, r 1100 12 25, 26 (1, 1) +45 
f, r, b 1101 13 27, 28 (1, 1) +45 
f, r, l 1110 14 29, 30 (1, 0) -45 
f, r, l, b 1111 15 31, 32 (1, 0) -45 
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SIMULATION 
 
The battlefield is a grid of 201 by 201 points.  Ten UCAVs enter the field from the boundary, as 
shown in Figure 2.  When two UCAVs are closer than or equal to four grids apart, they collide 
and are taken out of the simulation.  The UCAVs that go out of the boundary are also taken out 
of the simulation.  The simulation lasts 100 time steps. 

 
Figure 2. The positions UCAVs entering the battlefield 

 
FITNESS FUNCTION 

 
The fitness function is defined as the coverage of UCAV surveillance sensor in 20 time steps.  
Coverage is defined as the percentage of the field covered by the surveillance sensor ranges of all 
UCAVs.  The overlap and repeated grid points are only counted once.  The final fitness value is 
the average of the coverage percentiles of the five 20-time-step results.  The range of a 
surveillance sensor used in the simulation is a circle of 24-grid-point radius. 
 

RESULTS 
 
We have made many GA runs, keeping track of the maximum, minimum, mean and standard 
deviation of the fitness of the control command strings.  The best control command string is {0 0 
1 0 0 1 0 1 1 1 0 1 0 0 1 1 1 1 0 1 1 0 1 0 1 1 1 1 0 1 1 0} with fitness value of 0.9603.  It 
represents an average of 96.03% of coverage; a very good result.  Other results will be discussed 
in more detail in the following sections. 
 
We set the GA runs to stop at 25 generations in most of the cases.  If we extend the number of 
generations, we may get better results.  However, since GA is a probabilistic algorithm, there is 
no guarantee that it will reach a certain fitness value.  In a typical GA run, the fitness value 
increases rapidly in the first few generations and levels off.  Therefore, GA is an effective 
method of getting a very good solution if the mathematical optimum is not necessary. 
 

ROBUSTNESS ANALYSIS 
 
Genetic Algorithms can find control command strings that perform satisfactorily.  However, the 
GA runs reported in the last section are based on a deterministic system.  If there is uncertainty, 
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will the control command strings still perform well?  This question can be answered by 
robustness analysis.  Disturbance from the environment or the battlefield situation can lead to 
large deviations from the desired results.  The following are results of simulations using certain 
disturbances as examples to demonstrate the influences of disturbances.  In these examples, think 
of the disturbance as a wind gust that instantly changes the heading of a UCAV.  The 
occurrences of disturbance are random with certain percentages as their probabilities. 
 
Monte Carlo (MC) simulation [9] is used to evaluate the robustness.  The simulation procedure is 
the same as the procedure reported in the previous sections, except disturbances are added.  A 
random number generator is used to decide whether disturbance affects a particular airplane in a 
certain step.  When the simulation is repeated, a different seed is assigned to the random number 
generator; therefore, the occurrences of the disturbances are different from simulation to 
simulation.  In the following tests, the disturbance probability is set to 5% and the simulation is 
repeated 1,200 times.  The averages and standard deviations are used to represent the 
performance and robustness of a certain control command string. 
 
In the following paragraphs, four sets of results are compared with MC simulations.  The first 
one is the set of results obtained from the GA with deterministic fitness functions, as described in 
the previous sections.  In other words, the wind-gust disturbance is not considered when running 
these GAs.  Table 2a shows the better control command strings evolved from GA.  Table 2b 
shows the comparisons with MC simulation results.  Column two shows the fitness values 
obtained from GA runs with deterministic fitness value evaluations.  The Monte Carlo simulation 
results, columns three and four, show that control command string #1 has good performance 
(high average) and robustness (low standard deviation).  
 

Table 2a. GA with deterministic fitness functions, control command strings 
 

# Control Command String 
1 00100101110100111101101011110110
2 01101010110011101111111111110111
3 01101000110000101110101011110000
4 00110110110101011101100111111101
5 00110110110101011101100111111111
6 00101010110111111111101111001100
7 00111011110100011011101011001110
8 01011010110111101111111111101011
9 01001010110111101111111111100101
10 00101001110101101110101011001110
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Table 2b. GA with deterministic fitness functions, comparisons with MC Simulation 
 

# GA fitness w/o dist. MC sim. avg. MC sim. std. 
1 0.9603 0.9006 0.0342 
2 0.9597 0.8452 0.0493 
3 0.9486 0.8444 0.0490 
4 0.9473 0.9006 0.0355 
5 0.9473 0.8926 0.0340 
6 0.9462 0.8494 0.0564 
7 0.9441 0.8506 0.0560 
8 0.9411 0.8506 0.0560 
9 0.9411 0.8955 0.0340 
10 0.9409 0.8874 0.0329 

 
The second set of results is obtained from the GA runs with 5% wind-gust disturbance added.  
The wind-gust disturbance is implemented in the fitness evaluation and the simulation is only run 
once.  Because of the uncertainty in the fitness evaluation, the good fitness values obtained by 
GA may be accidental.  The controls evolved from this approach may not perform well in 
different simulations.  Table 3a shows the better control command strings evolved from GA with 
5% wind-gust disturbance.  Table 3b shows the comparisons with MC simulation results.  The 
second column in Table 3b shows the fitness values of the direct GA runs with wing-gust 
disturbance.  The third column is the fitness values (surveillance coverage) of the same set of 
control strings but without disturbances.  The disturbance changes the surveillance coverage in 
both directions, increasing and decreasing.  GA, by its nature, retains the simulations with better 
results.  As discussed in the previous section, those good results may be accidental.  The 
performance of each control string is evaluated by MC simulation.  The average coverage and 
standard deviations are listed in column four and five, respectively.  The results show that not all 
control command strings performs well in MC simulations.  Among them, the control command 
string #10 has good performance and robustness. 
 

Table 3a. GA with disturbance in the fitness functions, but only one evaluation, control 
command string 

 
# Control Command String 
1 01111011110001111001101011111101
2 00001000010011111101101111111110
3 01111011110001111001101011110010
4 01010000110001011101101011110010
5 01111011111101111001101011110010
6 01111001110011111001101011111101
7 01111011110001111001101011111110
8 01111010110101111101101011110011
9 01111001110011111001101011111011
10 01111011111101111001101011111110
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Table 3b. GA with disturbance in the fitness functions, but only one evaluation, comparisons 
with MC simulation 

 
# GA fitness with dist. Fitness w/o dist. MC sim. avg. MC sim. std. 
1 0.9655 0.8656 0.9029 0.0327 
2 0.9637 0.7266 0.8374 0.0688 
3 0.9625 0.8744 0.9001 0.0339 
4 0.9620 0.9046 0.8458 0.0701 
5 0.9598 0.9172 0.9076 0.0316 
6 0.9590 0.9370 0.8950 0.0336 
7 0.9589 0.8744 0.9036 0.0321 
8 0.9567 0.9119 0.8722 0.0424 
9 0.9543 0.9226 0.9034 0.0317 

10 0.9542 0.9172 0.9105 0.0314 
 

The third and fourth sets of results are obtained from GA runs that incorporated a "partial" MC 
simulation, which is different in concept from the MC simulation that is used to evaluate the 
results.  The wind-gust disturbances change the positions or the headings of the UCAVs.  Those 
are equivalent to new sets of initial conditions.  Therefore, the partial Monte-Carlo simulation is 
set up as follows.  One hundred sets of initial positions and headings of the 10 UCAVs are 
selected randomly.  The simulations are run for only 20 time steps without wind-gust 
disturbance.  Simulations are repeated 100 times.  The fitness value is either the average or the 
standard deviation of the 100 runs. 
 
Table 4a shows the better control command strings obtained from the GA runs with partial MC 
in fitness evaluations.  Table 4b shows the comparisons with the MC simulations.  The second 
column shows the averages of the partial MC runs, which are used as the fitness values of the 
GA.  The MC simulation results are shown in columns four and five.  The fact that all standard 
deviations are relatively high (all above 0.075) implies that this set of data does not contain any 
robust control command strings. 
 

Table 4a. GA with partial MC simulation using average as the fitness value, control command 
string 

 
# Control Command String 
1 00010010111001101110101011001101
2 00111010001111101111101111000000
3 00101010001111101111101111000100
4 00001010001111101111101111000100
5 00001010001111101101101111000100
6 00101010001111111111101111000100
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Table 4b. GA with partial MC simulation using average as the fitness value, comparisons with 
MC simulation 

 
# GA partial MC sim. avg. GA partial MC sim. Std. MC sim. avg. MC sim. std.
1 0.9162 0.0545 0.7968 0.0755 
2 0.9159 0.0517 0.6905 0.0917 
3 0.9151 0.0575 0.7253 0.0917 
4 0.9149 0.0531 0.6703 0.1041 
5 0.9147 0.0526 0.6695 0.1029 
6 0.9141 0.0532 0.7411 0.0909 

 
Table 5a shows the better control command strings obtained from the GA runs with partial MC 
in fitness evaluations.  Table 5b shows the comparisons with the MC simulations.  The second 
column shows the results of the partial MC runs using standard deviations as the fitness values of 
the GA.  The MC simulation results are shown in columns four and five.  This set of data, in 
general, gives more robust control command strings than the set shown in Table 4a and 4b.  The 
fact that the average coverages shown in Table 5b are all above 86% indicates that performance 
is not sacrificed. 

 
Table 5a. GA with partial MC simulation using average as the fitness value, control command 

string 
 

# Control Command String 
1 00011000110001011011101011000110
2 01011000110001011011101011000111
3 00011000110001011011101011000100
4 00011000111101011011101011000110
5 00111000110101101001101011000111
6 01111000110101101001101011000110

 
Table 5b. GA with partial MC simulation using average as the fitness value, comparisons with 

MC simulation 
 

# GA partial MC sim. avg. GA partial MC sim. Std. MC sim. avg. MC sim. std.
1 0.9177 0.0327 0.8626 0.0533 
2 0.9180 0.0331 0.8618 0.0549 
3 0.9182 0.0333 0.8623 0.0544 
4 0.9189 0.0339 0.8641 0.0545 
5 0.9168 0.0341 0.8890 0.0379 
6 0.9168 0.0342 0.8899 0.0372 
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SUMMARY AND FUTURE RESEARCH 
 
To evolve robust control using Genetic Algorithms, Monte Carlo simulation is needed in the 
fitness evaluations.  However, Monte Carlo simulation is computationally expensive.  The 
authors have tried four different approaches.  None of them can guarantee robustness of control.  
However, they can provide a set of candidates.  Running MC simulation using this limited 
candidate set can save a lot of time. 
 
There are several possible directions for future research.  The first one is to improve the 
approach reported in this paper.  For example, the GA with partial MC simulation in fitness 
evaluations can perform better.  The partial MC simulation is designed to reduce the simulation, 
and hence the GA, run time.  However, because it only runs 20 time steps, instead of 100 time 
steps in the regular simulation, the effects of losing UCAVs are downplayed.  In other words, if 
two UCAVs are lost due to collision, the coverage percentage may not suffer much in the 20 step 
time.  But if the simulation keeps running to 100 step time, the coverage will be reduced by a 
much larger amount.  To solve this problem, the fitness values of the GA with partial MC 
simulation can add a weighting factor: (# of surviving UCAVs/10).  If all 10 UCAVs survive, the 
factor is one.  Otherwise, the fitness is reduced according to the number of UCAVs lost. 
 
The second possible research direction is to try multi-objective GA. [10, 11] Both performance 
(average coverage) and robustness (standard deviation) are used as the fitness functions.  The 
multiple-objective optimization uses Pareto optimality, i.e., instead of looking for a single 
solution, it looks for a set of solutions called Pareto-optimal set.  A Pareto-optimal solution is a 
solution that is not dominated by any other solution in the solution pool. 
 
The third possible research direction is to study the system parameters' influence on the 
robustness of control.  One such parameter is the sensor range.  There are two kinds of sensors, 
the surveillance sensor and event sensors.  The surveillance sensor is used to survey the 
battlefield.  The range of the surveillance sensor is limited by the capability of the sensor, and 
therefore, is treated as a fixed parameter.  The event sensor is used to detect events, such as 
collision threats and the boundaries.  The event sensor need not be an on-board system.  
Information, such as where other UCAVs are and how close they are to the boundary, can be 
sent to the UCAV from a ground station or other information sources.  Therefore, the range of 
the event sensor can be viewed from another perspective, namely the distance at which the 
UCAV reacts to an event.  For example, if the range of the event sensor is 1 km, it really means 
that the UCAV may make a maneuver when another UCAV (or the boundary) is within 1 km.  
Maybe it is better to call it “reaction distance.”  The influence of reaction distance on the 
robustness of control is an interesting topic. 
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